
Quality Starts with the Definition of Goals
Robert Darimont, Emmanuelle Delor, André Rifaut

CEDITI, Avenue Georges Lemaître, 21, B-6041 Charleroi -- Belgium
{Robert.Darimont, Emmanuelle.Delor, Andre.Rifaut}@cediti.be

1. Introduction
A weekly journal for private sector executives and directors recently featured an article entitled: "No
baker would survive with only 16% satisfied customers. Half of the failures in IT projects are due to
inadequate communication". This article referred to a statistic published in 1995 by the Standish
Group [STG 95] which reveals a very harsh reality from a sample of more than 8000 IT projects
carried out by some 350 American firms: only 16 % of projects can be described as complete
successes. They eventually succeed while keeping to the anticipated costs and functions. Almost one
in three projects never succeed and the remainder (over half) show a half-measure result with partially
installed functions, a cost approaching 200% compared to the initial budget, and with a significant
delay.
When the causes of these failures are analysed, it emerges that almost half of them are due to inade-
quate analysis of requirements. The survey goes further and breaks down that inadequacy as
follows: lack of information for the user represents 13% of the causes of failure, inadequacy of the
specifications 12%, their changing nature 11%, unrealistic expectations 6%, and confused objectives
5%. Discovering a requirement during the course of development leads to cost overruns and delays,
which are even larger when this discovery is made late in the day.
This paper presents the principles of the Kaos method, the functions of the Grail tool, the process fol-
lowed during analyses, and feedback from experience from carrying out requirements analyses, from
drawing up IT master plans, strategic analyses and IT specifications.

2. The Kaos method
Most of the software engineering methodologies currently in use are dedicated to the specification of
a solution and do not really address the description of the problem, that is, specifying the goals to be
met, describing the application domain, deciding who will perform which actions to satisfy the goals,
etc.; in one word, to perform a requirement analysis.
A requirements analysis in Kaos [DAR 93, DAR 96, VLA 98{a,b,c}] is broken down into three
phases:
• gathering of the information to be used as a guide for the goals to be achieved
• modelling
• drawing up of a report (specifications, synthesis, IT master plan, etc.)
The aim of the modelling phase is to identify all the relevant concepts by completing an information
framework having a pre-established structure (metamodel). This framework enables the analyst to
classify the concepts that he/she identifies and to relate them to each other.
The framework pre-defines different types of concepts and different types of relationships between
concepts. Those concepts types and relationships are explained in the following sections. A single
example will be used throughout the paper to illustrate the approach. This example is described first.

2.1 Case study
We have been called by the authorities of a large city to help select the best configuration for a
new crossroads. The authorities expect a report that motivates the choices we advocate and
that anticipates the requirements document for the actual construction of the crossroads.

Let us observe that we are asked to analyse a problem, not necessarily a software problem. If a soft-
ware component is needed to implement the solution, it will be introduced later on. This yields two
key ideas of the Kaos method :

Key idea. A requirement analysis should not only study the software system we have in mind but
also the part of its environment with which the system will interact.
Key idea. Before attempting to describe a solution in a requirements document, it is necessary to
describe and analyse the problem which we are faced with. In fact, we strongly believe that a
good requirements document specifies the problem to be solved and minimal technical constraints
on the solution to be built, no less and no more.

2.2 Goal model
The first task of the analysis will be to address the following questions: ‘who are the stakeholders
implied in this problem?’ and ‘what do they want?’. Answers to these questions will be gathered from
interviews, written documents, observation of an existing system, and knowledge about the problem
domain. The more an analyst is acquainted with a specific domain, the easier it will be for her to find
good abstractions and to elicit the needed properties.

Case study. The following table shows some of the stakeholders and some of their wishes for the road
crossing example.

Table 1: Stakeholders and their wishes

Stakeholder Stakehoder’s wishes
 Car driver no crashes with other road-users

 free traffic flow
 road to follow is clearly known

 Pedestrian safe road crossing
 short waiting time

 Public authorities construction costs minimised
 running costs minimised
 no casualties

Biker not to be run over by cars
 free traffic flow

In Kaos, stakeholder’s wishes are named goals. Goals can be shared by different stakeholders and
goals typically need the cooperation of different stakeholders to be satisfied.
For instance the goal Free traffic flow is shared by car drivers and bikers. It needs the cooperation of
all road users; the way the crossroads is configured and managed will probably contribute to satisfy
this goal.
Goals can often be defined in terms of system states to reach (or leave) or system states to maintain
(or avoid). A goal can also require the optimisation of some parameter(s).
The Kaos method invites the analyst to collect and relate goals with each other: some goals contribute
to other ones; others can be conflicting with each other. Abstraction can be introduced to highlight
common goals. To help the analyst relate goals with each other, he/she is prompted to ask the follow-
ing questions for each goal that has been identified:
• the ‘why’ question: why is this goal needed ? What is the upper-level goal that motivates this

goal?
• the ‘how’ question: how can this goal be satisfied? What are the lower-level goals that will

contribute to the satisfaction of this goal?
In Kaos, a goal refinement is a relationship between goals that allows the analyst to connect a goal
with its contributing subgoals.

Case study. Figure 1 shows a Kaos goal diagram related to the case study. Rectangles stand for goals. Cir-
cles stand for refinements of upper goals into a set of lower subgoals. Certain goals have been introduced to
put some structure in the graph as for instance Costs minimised or Adequate crossroads. A goal can contrib-
ute to more than one parent goal; for instance, the goal Road to follow clearly identified contributes to the
Free traffic flow as the driver will not hesitate about the direction to follow if road signs are clear; it also
contributes to the goal Safe road crossing as a driver hesitating about his/her way or looking for road signs
increases the risk of a crash.

Alternatives describe different ways to achieve goals. They can be motivated by different policies or
design decisions as for instance the technology used or the quality of the solution they propose (relia-
bility, performance, ...). Alternatives are not necessarily exclusive, that is, one can decide to
implement a system with several of them included, for instance, to improve system reliability.
Alternatives do not define partitions as different alternatives may share common subgoals.

Case study. Figure 2 shows some alternatives refining the goal No crash with other road-users. To avoid a
crash, that is, two crossing road-users at the same place at the same time, one can choose to never have two
crossing road-users at the same place by separating the lanes they follow (as in interchanges). One can also
choose to allow crossing road-users to be at the same place but never at the same time by regulating the traf-
fic flow. Both alternatives share a common subgoal: highway code must be respected by the road-users.
Traffic regulation, in turn, can be achieved either by forcing road-users to merge their trajectories inside the
road crossing (roundabout) or by alternating traffic in each crossing direction. A way to implement the latter
is to require traffic lights.

Conflicts. Goals expressed by different stakeholders may be conflicting. In Kaos, a conflict stands
between two goals if there can be system states in which both goals are logically contradictory. It is
important to identify conflicting goals as early as possible in the life cycle to minimise the risk of sys-
tem rejection by some category of stakeholders.

FIGURE 1 : High-level goals

FIGURE 2 Alternatives

Case study. The goal Separated lanes in Figure 2 may be conflicting with the goal Construction costs mini-
mised in Figure 1as the construction of an interchange is one of the most expansive designs to organise a
road crossing. The goal Speed limits respected in Figure 2 may be conflicting with the goal Free traffic flow
as they could down the traffic flow. Conflicts are graphically represented in a goal graph by connecting the
conflicting goals with a labelled link (see Figure 3).

2.3 Responsibility model
Key idea. In Kaos, a requirement is a goal, the satisfaction of which can be put under the
responsibility of an agent.

An agent in Kaos is a processor (human or software) capable of behave to achieve assigned goals.
Case study. Requirements have already been shown in Figure 2. There are represented as goal rectangles
appearing with a thick border. For instance, Highway code respected and Working traffic lights are examples
of requirements. The figure also shows that requirements, like goals, can be refined. For instance the
requirement Highway code respected is refined into two requirements: Speed limits respected and Traffic
lights respected.

A Kaos responsibility model typically contains several diagrams. Each diagram focuses on the
responsibilities of an agent in the system. The agent is drawn at the centre of the diagram and all the
requirements for this agent are displayed around it.

Case study. Figure 4 shows requirements for the traffic light controller agent. Agents are represented by
hexagons. Responsibility relationships between an agent and a requirement are also represented graphically.

FIGURE 3. Conflits

FIGURE 4: Responsibility relationships

During analysis, different candidate agents can be assigned to fulfill a requirement. Selection among
agents can result from a cost, reliability or performance comparison. Even if, in the final requirements
document, only one agent is responsible for a requirement, it is important to keep track of the
rationale behind the choice of a particular agent for satisfying a requirement as this choice can be
revisited later on for next releases of the system.

Key idea. A Kaos model is elaborated non only to produce a particular result at a particular instant
in time (as for instance a requirements document), but also to accompany the system documenta-
tion during its lifetime.

2.4 Object model
Goals are defined by means of properties relating system states with each other. In Kaos, these system
states consist of object states. Object states aggregate attribute name-value pairs defining the underly-
ing objects. The Kaos object model allows the analyst to define Kaos objects almost as a UML
analyst defines classes in a class diagram with the following differences:
• A distinction between four kinds of objects is made: entities, relationships, agents, and events.

Agents are active objects capable of actions to achieve goals. Entities are passive objects whose
states are modified by actions performed by agents. Events are instantaneous objects that cause
and stop actions. Agents, entities and events are autonomous, that is, their definitions do not rely
on the definition of other objects. Relationships, on the other hand, are objects dependent on
other linked objects.

• Relationships are first-class objects. They can be binary, ternary or n-ary. Attributes can be
attached to them; they can be specialised. Minimum and maximum cardinalities can be specified
on links. A cardinality on a link indicates a number of times a same instance of an object can be
linked through the relationship.
Case study. Figure 5 shows an object model in which the agents for the crossroads have been put together.
The agent Roaduser has been introduced as a common abstraction for Car drivers, Bikers, and Pedestrians.
This agent will be used in the model when the indication of a specific agent category is not relevant.
Entities are represented by parallelograms and relationships by flattened hexagons (compare with agents).
Links between a relationship and its linked objects are shown by arrows linking the relationship to the linked
objects. For instance, Crossroads configuration is a ternary relationship between two entities Crossroads
and Lane, and an agent: Traffic Light Controller.

2.5 Operational model
Besides defining goals, objects and requirements under the responsibility of agents, Kaos allows the
analyst to describe the behaviours that agents have to adopt in order to satisfy the requirements
assigned to them. In Kaos, behaviours are named actions and represent state transitions. They are
described in terms of preconditions (minimal conditions on the system state which must be met before
executing the action), trigger conditions (conditions on the system state making execution of the
action mandatory), and postconditions (conditions on the states resulting from performing the action if
the precondition holds). Each kind of condition is split into two categories:

FIGURE 5. Object model

• domain conditions: conditions that hold independently of specific requirements. They describe a
“standard” behaviour according to predefined agent capabilities.

• strengthened conditions: additional conditions that are introduced to strengthen agents’ standard
behaviours so that they will be able to achieve preset requirements.

When an action allows an agent to fullfill a requirement, an operationalisation relationship is created
between the requirement and the action.

Key idea. A clear distinction between domain and strengthened conditions favors traceability from
goals to operational required behaviours. Impact and risk analyses will also be easier to produce
when future releases of the system put certain requirements and behaviours in question.

Case study. Figure 6 shows the action Turn light on performed by the agent Traffic Light Controller. The
action operationalises the constraint Never Both Green Lights on. Details on the specification of the action
show that the domain precondition for the action is ‘the light must be turned off’ and that the domain post-
condition for the action is ‘the light is switched on’. A strengthened precondition will prescribe that if the
action is applied on a green light, the green lights for the other directions must be off.
The figure also shows how the constraint Flashing yellow lights when out of order is operationalised by two
actions (Turn light on and Turn light off) and one event that triggers the Turn light off action (Main red light
ko).

3. The Grail tool
A prototype tool has been developed to support Kaos analyses [DAR 97]. It consists in a graphical
editor to represent the concepts graphically, a form editor to describe each concept textually, a report
generator extracting information from the model and presenting it according to a predefined template,
a database for querying about concepts and their “neighbourhoods”, and a hypertext generator for
browsing through the model.
To address the increasing interest in the methodology, a commercial version of the tool, Grail, is cur-
rently being developed. Version 1 of the tool will contain the following components:
• a graphical editor to represent the concepts and their relationships,
• a text editor allowing the analyst to record interview summaries or to associate descriptive texts to

diagrams,
• an attribute editor to specify predefined attribute values or user-defined attribute-value pairs
• an explorer to retrieve diagrams, text documents, and concepts by names, types or occurrences
• a hypertext documentation generator that allows one to inspect the entire model with a Internet

browser tool in a very user-friendly way.
The Grail tool is a meta case tool: the Kaos methodology is not hard-coded in the tool. Evolution or
specific customisations of the tool will be easier to implement. Specifications are saved in XML for-
mat, including diagrams (in the SVG format).

FIGURE 6. Operational model

The tool will be available on all major platforms since it is implemented in Java. It has been designed
to be easily integrated with other CASE tools. Integration can be achieved in three ways:
• by exchanging data in XML format;
• by interfacing with an event-based API;
• by querying the tool with OQL (an object-oriented query language standard similar to SQL).

Figure 7 shows a screen shot of the tool. The explorer appears on the left of the screen. The right part
shows a diagram edited by the graphical editor, the form editor and a descriptive text edited by the
text editor.
Figure 8 shows the same information but in the Web-based generated documentation.

FIGURE 7. Grail

4. Experience report
Experience acquired from numerous industrial studies performed by CEDITI has shown that the Kaos
framework is highly efficient when carrying out requirements analyses, devising IT master plans or
producing strategical analyses.
The following table summarises the kinds of projects already realised.
 Publishing Reqs engineering for a complex copyright management system;

 Reqs document for Media Sales, Distribution & Advertising Management
 Aeronautics Reqs traceability for Air Traffic Control Procedures
 Drugs Industry & Distribution Strategic analysis; Reqs for an e-learning system
 Telecommunications Requirements re-engineering of a cable telephone system
 Language Industry Reqs for Web-based professionnal and on-the-fly translation tools
 Hospitals IT plan, Reqs for standard clinical reporting
 Earthmover Factory Finite scheduling optimisation

Requirements documents (typically 100 to 150 pages long) produced by the method and its associated
tools are IEEE 830 standard compliant. About 20% of such documents consist in an exhaustive glos-
sary of terms used in the rest of the document. The glossary is directly derived from the Kaos object
model. The requirements are progressively introduced in the text according to a top-down, linearised
traversal of the goals graph.
Our experience has shown the following benefits and returns of the Kaos approach:
• requirements documents produced with the method have been unaminously recognised by our cus-

tomers for presenting remarkable qualities: they are well structured, self-contained, motivated, eas-
ily understandable, and calls for tender is managed more easily;

FIGURE 8. Grail Web-based documentation

FIGURE 8. Grail Web-based documentation

• the Kaos model is a highy effective way to communicate about the system: it provides a common
framework helping the different stakeholders to understand each other’s viewpoints: managers
acknowledge goals, requirements and assignments that underly operational models; technicians
acknowledge operational models that are motivated by the goals and that can be easily mapped to
UML;

• it turns out that many companies lack vertical traceability between the company strategy and the
requirements documents produced on the one hand, and between the requirements document and
the solution specification on the other hand. A Kaos model allows one to trace requirements to
goals and to trace high-level, coarse-grained behavioral specifications to requirements.

5. Conclusions
In the requirements engineering research community, the Kaos approach is considered as one of the
most prominent methods for eliciting, analysing, and formalising requirements (see the References
section below). Experiences in various industries have proved the benefits of the approach and have
shown how well it improves the quality of requirements documents and, therefore, the quality of solu-
tions based on such documents.
We now feel that the time has come to allow a larger number of companies to benefit from the
approach: this explains why CEDITI will henceforth commercialise Grail and provide support for the
Kaos approach.
New features that will soon extend the tool’s capabilities include integration with existing market
leader tools in requirements management and integration with existing UML modeling tools. More
advanced features will be progressively incorporated. Among them, the edition of formal assertions
and embedded tools to enable features like model checking, simulation, and test generation.
We strongly believe that all these features put together will easily convince professionals that quality
definitely starts with the accurate definition of goals.
Acknowledgment. The Kaos approach results from several research projects led by Prof. A. van
Lamsweerde (University of Louvain) and funded by the European Union, the Belgian and the
Walloon governments. The Grail tool which will soon be commercialised is being built by a strongly
motivated team of Java developers: Jean-Luc Roussel, Cédric Nève, Philippe Legrain, Denis Genard,
Denis Ballant and Philippe Massonet, with the significant contribution of André Rifaut for providing
requirements, feedback, and prototypes for the tool. Kaos analyses that have proved the benefits of
the approach have been led by the authors of this paper. Several PhD theses have contributed to
explore advanced features eventually deployed in the tool; more are on their way.

6. References
[DAR 93] Dardenne, A., van Lamsweerde, A., Fickas, S., Goal-directed Requirements Acquisition, in
Science of Computer Programming, Vol 20, 1993, pp 3-5
[DAR 96] Darimont, R., van Lamsweerde A., Formal Refinement Patterns for Goal-Driven
Requirements Elaboration, Proc. FSE-4, ACM 10/96, pp 179-190
[DAR 97] Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A., Grail/Kaos : An Environment
for Goal-driven Requirements Engineering, in Proc. ICSE 19, 05/97, pp 612-613
[STG 95] Standish Group, http://www.standishgroup.com/chaos.html
[VLA 98a] van Lamsweerde, A. , Darimont, R., Letier, E., Managing Conflicts in Goal-driven
Requirements Engineering, IEEE Transactions on Software Engineering, 11/98
[VLA 98b] van Lamsweerde, A., Willemet, L., Inferring Declarative Requirements Specifications
from Operational Scenarios, IEEE Transactions on Software Engineering, 12/98
[VLA 98c] van Lamsweerde, A., Letier, E., Integrating Obstacles in Goal-driven Requirements
Engineering, Proc. ICSE'98, IEEE-ACM, 04/98
A full bibliography of publications about the method can be found at URL
http://www.info.ucl.ac.be/research/ projects/AVL/ReqEng.html.

7. Bibliographical sketch

Robert Darimont received the MS and PhD degrees in applied sciences (software
engineering orientation) from UCL (Université catholique de Louvain), Belgium. He is
the manager of the IT consulting and R&D department at CEDITI, the IT transfer center
of the University of Louvain. He leads industrial projects using Kaos; and helps
companies to adopt up to date and precompetitive software engineering technologies.

Emmanuelle Delor received the MS degree in computer science from the University of
Namur, Belgium. She is senior consultant at CEDITI, the IT transfer center of the
University of Louvain. She participates to industrial projects using Kaos, and is
responsible for the QA program at CEDITI.

André Rifaut received the MS degree in applied sciences (applied mathematics
orientation) from UCL (Université catholique de Louvain), Belgium. He is senior
consultant at CEDITI, the IT transfer center of the University of Louvain. He
participates to industrial projects using Kaos, and is involved in the design of advanced
features of Grail, the tool supporting the Kaos methodology.

